Abstract

In quartz capillaries, macroporous monolithic sorbents based on divinylbenzene are synthesized and their porous structure is studied via inverse size-exclusion-hydrodynamic chromatography. Either a single-component porogen (a higher alcohol) or a two-component porogen (a mixture of a higher alcohol and mesitylene) is used for the synthesis of monoliths. The removal of a solvent good for a polymer from a porogen results in an increase in the size of flow-through channels and a decrease in the free-space volume inside the monolith; this space is used for the separation of polymer sorbates (the working volume of a column). At the same time, the volume of micro- and mesopores in the monolith structure is practically independent of the content of the good solvent in the porogen. It is inferred that the good porogen plays an active role in formation of the macroporous structure of monoliths. The structure of monoliths obtained on the basis of the two-component porogen with the use of nonanol and mesitylene or toluene is optimum for the molecular-mass analysis of polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.