Abstract

ABSTRACT It is very important to improve the electrical conductivity of polymer nanocomposites, which can widen their application. The effect of the nanofiller shape on the relationship between the nanofiller microstructure and the conductive probability of the nanofiller filled polymer nanocomposites (PNCs) has been investigated in detail by employing a coarse-grained molecular dynamics simulation. Four kinds of nanofiller shapes are considered: rod filler, Y filler, X filler, and sphere filler. First, the mean square radius of gyration gradually decreases from rod filler, Y filler, X filler, to sphere filler, which reflects the highest aspect ratio for rod filler. Meanwhile, the dispersion state of the nanofiller is relatively uniform in the matrix. The conductive probability (denoted by the formation probability of the conductive network) is adopted to stand for the conductive property. The results show that the conductive probability gradually decreases from rod filler, Y filler, X filler, to sphere filler, which is attributed to their gradually decreased size. In summary, the nanofiller shape affects the electric conductive property of PNCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.