Abstract

Simple SummaryDiabetes mellitus as a systemic metabolic disease is one of the most serious threats to global health in this century. Diabetic cardiomyopathy is increasingly recognized as one of the most important complications of the disease, which is associated with impaired cell energy metabolism and damage to mitochondria in cardiomyocytes. Therefore, targeting mitochondrial dysfunction by pharmacological agents can be used as a therapeutic strategy in diabetic heart disease. The aim of the work was to study the effect of the mitochondria-targeted agent alisporivir on the development of mitochondrial dysfunction in the heart of mice with experimental diabetes mellitus. Alisporivir has been recently identified as a non-immunosuppressive analogue of cyclosporin A, a selective inhibitor of cyclophilin D and the mitochondrial permeability transition pore opening, with a potential in a wide range of therapeutic indications. Our results indicated that alisporivir alleviates diabetes-induced abnormalities in the ultrastructure and functions of mitochondria in cardiomyocytes and increases the rate of glucose utilization in diabetic mice. The data suggest that alisporivir acts as a mitochondria-targeted metabolic reprogramming agent and attenuates oxidative damage to the heart tissue of diabetic mice.Diabetes mellitus is a systemic metabolic disorder associated with mitochondrial dysfunction, with the mitochondrial permeability transition (MPT) pore opening being considered as one of its possible mechanisms. The effect of alisporivir, a non-immunosuppressive cyclosporin derivative and a selective inhibitor of the MPT pore opening, on the ultrastructure and functions of the heart mitochondria of mice with diabetes mellitus induced by a high-fat diet combined with streptozotocin injections was studied. The treatment of diabetic animals with alisporivir (2.5 mg/kg ip for 20 days) increased the rate of glucose clearance during the glucose tolerance test. The blood glucose level and the indicator of heart rate in alisporivir-treated diabetic mice tended to restore. An electron microscopy analysis showed that alisporivir prevented mitochondrial swelling and ultrastructural alterations in cardiomyocytes of diabetic mice. Alisporivir canceled the diabetes-induced increases in the susceptibility of heart mitochondria to the MPT pore opening and the level of lipid peroxidation products, but it did not affect the decline in mitochondrial oxidative phosphorylation capacity. The mRNA expression levels of Pink1 and Parkin in the heart tissue of alisporivir-treated diabetic mice were elevated, suggesting the stimulation of mitophagy. In parallel, alisporivir decreased the level of mtDNA in the heart tissue. These findings suggest that targeting the MPT pore opening by alisporivir alleviates the development of mitochondrial dysfunction in the diabetic heart. The cardioprotective effect of the drug in diabetes can be mediated by the induction of mitophagy and the inhibition of lipid peroxidation in the organelles.

Highlights

  • Diabetes mellitus (DM) as a metabolic disease is one of the most serious threats to human health throughout the world

  • Administration of alisporivir to diabetic animals has no effect on these parameters, there was a tendency for their recovery to the level of control animals

  • It should be noted that, according to the glucose tolerance test, alisporivir increased the rate of glucose utilization in diabetic animals (Figure 1b,c)

Read more

Summary

Introduction

Diabetes mellitus (DM) as a metabolic disease is one of the most serious threats to human health throughout the world. It is based on hyperglycemia and insufficient insulin secretion or malfunction. These metabolic disturbances lead to damage to many organs and tissues of the organism. Diabetes-induced changes in cardiomyocytes result in a wide range of structural and biochemical abnormalities eventually leading to systolic and diastolic dysfunction. One of these abnormalities is mitochondrial dysfunction in cardiomyocytes [4,5,6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.