Abstract

Highly conductive solid electrolytes used in energy storage systems could be developed by the systematic control of the ion conduction mechanism in the solid medium. In this study, we evaluated the ion migration mechanism of poly(vinylidene difluoride) (PVDF) gel electrolytes in relation to the structural/morphological features of the physically cross-linked PVDF gels. By measuring the spin–spin relaxation times (T2) of the cation/anion species of the quenched gel electrolytes, we found that anions with short T2 were located close to the crystalline phase forming the cross-links, while cations with long T2 were located in the solution-rich amorphous phase. The discrete locations of the cations and anions are suitable for preferential cation transport because the anions are restricted in the crystalline phase by the anion/crystallite interactions, as confirmed by the estimation of the microviscosity (βan). Enhancing the cation mobility by controlling the two-phase condition of the PVDF gel is a new and pro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.