Abstract

Three types of hexagonal boron nitride (h-BN) with graphitic crystal structure having different microstructures were subjected to high pressures (HP) and high temperatures (HT), and the kinetics of the phase transitions to the sp3-hybridized phases (w-BN, c-BN) was studied using in situ synchrotron diffraction. The analysis of the phase transformation kinetics revealed the transformation paths and activation energies Ea of the transformation of h-BN to the high-pressure forms of BN for different microstructures of h-BN. Defect-poor h-BN transforms to metastable wurtzitic BN (w-BN) with Ea ≈ 0.3 eV/at. Defect-rich forms of h-BN transform directly to c-BN, but with a higher activation energy. It was observed that the turbostratic disorder in h-BN retards the phase transition as compared to h-BN containing corrugated basal planes and a low degree of turbostracity. The experimental results are discussed in view of the microstructure changes during the HP/HT treatment and compared to available theoretical phase transition models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.