Abstract

In order to simulate the hydrogen bonding and proton transfer (PT) in protein-DNA/RNA interactions, a series of simplified models were employed and investigated in the gas phase. These models included various neutral, anionic and cationic glycine-uracil dimers, and their methylated derivatives generated by the mono- or dimethylation of glycine and/or uracil moieties of the dimer. The results reveal that the only process that can occur in the neutral complexes is a double-PT process leading to proton exchange between the two moieties (i.e., point mutation). The first methyl substitute can reduce the activation energy of the PT process and thus promote the isomerization of the two moieties; further methylation can reduce the isomerization in only some of the cases. In the anionic complexes, only the one-way PT (i.e., amino acid → nucleic acid base) process is energetically favorable, and this PT process is an interesting barrier-free one (BFPT), with the attached electron locating itself at the base moiety. Methylation will disfavor BFPT, but it cannot alter the nature of BFPT. In the cationic complexes, three different PT processes can occur. These processes can transform mutually by adjusting either or both of the methylated sites and methyl number, indicating that the methylation can regulate the dynamics of these PT processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call