Abstract

ABSTRACTThe effect of the final melting temperature (Tf) on the crystallization of poly(l‐lactide) (PLLA)/poly(d‐lactide) (PDLA) was studied via a combination of differential scanning calorimetry, wide‐angle X‐ray scattering, polarized optical microscopy, and Fourier transform infrared (FTIR) spectroscopy. We observed that a residual stereocomplex (SC) crystal induced the formation of SC crystals during cooling from a Tf (230°C) just above the melting peak of the SC crystals. On cooling from a Tf (240°C) just above the endset temperature of SC crystal melting [Tm(S)(E)], the possible order structure and the strong interchain interaction promoted the preferential crystallization of SC crystals; this enhanced the formation of α crystals. During cooling from a Tf (≥250°C) far above Tm(S)(E), the crystallization peaks of α and SC crystals converged. The FTIR results indicated that the residual SC crystals, possible ordered structure, and interchain interactions in the melt might have been the key factors for the different crystallization of PLLA/PDLA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43015.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call