Abstract

The effect of magnetic field of 0.3 T on the concentration, distribution of sizes in suspension and zeta potential of colloidal gold and colloidal silver nanoparticles, obtained by considering the pulsed laser ablation in double distilled water was studied. The magnetic field was transverse to the direction of incidence of the laser radiation and parallel to the surface of a submerged target. An Nd: YAG laser was used (1064 nm in wavelength, 10 ns in duration, repetition rate of 10 Hz and 37 mJ of energy) to ablate targets. The colloids were characterized by inductively coupled plasma optical emission spectroscopy, ultraviolet-visible spectroscopy, dynamic light scattering and zeta potential. Concentration analysis suggested that applying magnetic field of 0.3 T during nanoparticle synthesis leads to higher concentration. Applying magnetic field led to an eleven percent increase in the concentration of the colloid with gold nanoparticles and a five percent increase in the concentration of the colloidal silver nanoparticles. The absorption spectra suggested the presence of spherical nanoparticles. When analyzing the effect of the magnetic field on the hydrodynamic size distribution of the nanoparticles and the zeta potential of the colloids, no significant changes were evidenced. The magnetic confinement of the plasma induced by laser ablation caused changes in the characteristics of the colloids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call