Abstract

A Magnetorheological Elastomer (MRE) can be categorized as a smart material as it can respond when it is subjected to a magnetic field against itself. Shrinking and changing shape in MRE is due to the displacement of magnetic particle in the MRE matrix. However, the lack of understanding of the magnetic flow through magnetic particle in the elastomer matrix causes difficulties to improve the best MRE matrix type and a magnetic circuit for use in MRE devices. In this paper, a finite element magnetic method (FEMM) software has been used to investigate and to study the effect of the magnetic flow when the angle of the magnetic particle in the MRE changed. The analysis was conducted in two-dimensional cross-section (axisymmetric type) with two magnetic particles in the elastomer matrix and the magnetic core. The result shows by changing the angle of the magnetic particle, the value of the magnetic flow and magnetic flux density also change. As a conclusion, the magnetic particle arrangement in the elastomer matrix plays a vital role in designing the MRE matrix layer and MRE device. By understanding the magnetic flow through the magnetic particle, one can improve the method in the preparation of MRE matrix and MRE magnetics circuit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call