Abstract

We present a thorough analysis of the electron density distribution (shape) of two electrons, confined in the three-dimensional harmonic oscillator potential, as a function of the perpendicular magnetic field. We found that the interplay of the classical and quantum properties lead to a quantum shape transition from a lateral to a vertical localization of electrons in low-lying excited states at relatively strong Coulomb interaction with alteration of the magnetic field. While at this regime in the ground states, the electrons always form a ring-type distribution in the lateral plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.