Abstract

The effect of the magnetic field curvature on magnetic islands in a tokamak is analyzed. It is demonstrated that the original investigation of this effect by Kotschenreuther et al. (1985) is inconsistent: on the one hand, the authors made the correct assumption that this is an ideal effect and, on the other hand, they described it in terms of the parameters characteristic of the “resistive ordering” approach, which is incompatible with the ideal approximation. More recent studies of the magnetic curvature effect have produced further ambiguities; as a result, a branch of the theory of magnetic islands has arisen that is based on the supposition that the effect under discussion can be described in terms of the Glasser-Greene-Johnson parameter DR. This branch is shown to be erroneous, because the parameter DR describes the plasma response to magnetic field perturbations on spatial scales of about the dimension of the linear resistive layer, while the characteristic spatial scale of the magnetic islands is much longer. It is concluded that the correct theory developed here for the magnetic curvature effect makes more optimistic predictions about its stabilizing role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.