Abstract

Microstructures and mechanical properties of the Mg–8Gd– xZn–0.4Zr ( x = 0, 1 and 3 wt.%) alloys, in the as-cast condition and the as-extruded condition, have been investigated. The results show that both the 14H long periodic stacking structure and the W-phase coexist together in the cast Zn-containing alloys. The volume fraction of the W-phase increases with increasing the addition of Zn. This phase is the crack source of the fracture. The 6H long periodic stacking structure is observed in the extruded Zn-containing alloys. The Mg–8Gd–1Zn–0.4Zr alloy exhibits the highest elongation, and the value of its elongation is 130% at 300 °C due to the refined microstructure. The W-phase plays an important role in improving the mechanical properties via pinning the movement of the grains at elevated temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.