Abstract

Microstructures and mechanical properties of the Mg–8Gd– xZn–0.4Zr ( x = 0, 1 and 3 wt.%) alloys, in the as-cast condition and the as-extruded condition, have been investigated. The results show that both the 14H long periodic stacking structure and the W-phase coexist together in the cast Zn-containing alloys. The volume fraction of the W-phase increases with increasing the addition of Zn. This phase is the crack source of the fracture. The 6H long periodic stacking structure is observed in the extruded Zn-containing alloys. The Mg–8Gd–1Zn–0.4Zr alloy exhibits the highest elongation, and the value of its elongation is 130% at 300 °C due to the refined microstructure. The W-phase plays an important role in improving the mechanical properties via pinning the movement of the grains at elevated temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call