Abstract

Macrophages are known to play a crucial role in the chronic inflammation associated with Chronic Obstructive Pulmonary Disease (COPD). BML-111, acting as a lipoxin A4 (LXA4) receptor agonist, has shown to be effective in protecting against COPD. However, the precise mechanism by which BML-111 exerts its protective effect remains unclear. In order to establish a cell model of inflammation, cigarette smoke extract (CSE) was used on the RAW264.7 cell line. Afterwards, an Enzyme-linked immunosorbent assay (ELISA) kit was employed to measure concentrations of tumor necrosis factor-α (TNF-α), interleukin-1beta (IL-1β), interleukin-18 (IL-18), and interleukin-10 (IL-10) in the cell supernatants of the RAW264.7 cells.In this study, we examined the markers of macrophage polarization using two methods: quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Additionally, we detected the expression of Notch-1 and Hes-1 through Western blotting. BML-111 effectively suppressed the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-18, as well as inflammasome factors NLRP3 and Caspase-1, while simultaneously up-regulating the expression of the anti-inflammatory cytokine IL-10 induced by CSE. Moreover, BML-111 reduced the expression of iNOS, which is associated with M1 macrophage polarization, and increased the expression of Arg-1, which is associated with M2 phenotype. Additionally, BML-111 downregulated the expression of Hes-1 and the ratio of activated Notch-1 to Notch-1 induced by CSE. The effect of BML-111 on inflammation and macrophage polarization was reversed upon administration of the Notch-1 signaling pathway agonist Jagged1. BML-111 has the potential to suppress inflammation and modulate M1/M2 macrophage polarization in RAW264.7 cells. The underlying mechanism may involve the Notch-1 signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.