Abstract

The phase behavior of polyp-phenylene terephthalate) (PPT) with pendant side groups, N-(4-nitrophenyl)-ethylaminoethanol (NPE) and N-(4-nitrophenyl)-L-prolinol (NPP) has been studied by using differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), and second harmonic generation (SHG). PPT-NPE showed a layered liquid crystalline morphology while PPT-NPP showed a completely amorphous structure. Compressive or shear stress applied on the polymer melt surface at 210 °C induced a more prominent layered structure of PPT-NPE whereas the amorphous structure of PPT-NPP remained unchanged under the stress. In order to understand this phase difference in terms of the repeat structure, we attempted theoretical ab initio Hartree-Fock, and DFT calculations for the monomers and molecular dynamics for the bulk state. The results indicated that molecular configurations are a good way of microscopically understanding the phases of rigid backbone polymers with functional side groups: The NPT (constant particle number, pressure, and temperature) simulation data at 210 °C agree qualitatively with the experimental data and the difference between PPT-NPE and PPT-NPP could be understood using rotational energy barrier, steric hindrance and inter-chain interactions. X-ray diffractometer (XRD) simulation patterns for the oligomers are also in qualitative agreement with the experimental WAXS data and the structural parameters of stacks of PPT-NPE chains are estimated to be layer distance (4.6 A), backbone distance (21.5 A), and side distance (12 A).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.