Abstract

The properties of the avalanche processes that develop on a dynamical lattice, the structure of links in which changes due to a specific characteristic of each lattice node, namely, its “activity,” which determines the probability of connection of a certain node with neighboring nodes in one step of lattice evolution. The statistics of the sizes of the avalanches appearing in the lattice system is studied as a function of the node activity and the link lifetime (the lifetime of the links formed in the system). It is analytically and numerically shows that the type of avalanche dynamics in the system changes as a function of these parameters. The following three regimes can take place in the system: (1) avalanches of any sizes, from small to catastrophic, can appear, which is reflected in the power-law behavior of the probability density function of the appearance of avalanches of certain sizes; (2) avalanches of a certain average size mainly appear in the system, and the probability density is close to that of a normal distribution; and (3) transient regime, where the probability density function of the appearance of avalanches of certain sizes is close to an exponential function. These results open up the possibilities of controlling the behavior of a complex system; in particular, they can be used to prevent catastrophic avalanches by changing the link lifetime and the average node activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call