Abstract
In this paper, the investigation was performed to determine the effect of leading-edge angle and leading-edge sweep on the aerodynamic coefficients of the projectile geometry and analyze the effect of roll moment on the fins at various operating conditions. A group of four models were considered, standard TTCP with the blunt leading edge and with 45° leading-edge along with modified TTCP with the blunt leading edge along with 30° sweep and with 45° leading-edge along with 30° sweep. The flow field solutions were obtained and considered as a function of roll moment coefficients, which are then compared to other numerical models and experimental results. The standard wrap-around TTCP models were subjected to varying velocities ranging from Mach 1.5 to 2.5. WAFs are considered a choice for spinning tube-launched projectiles because of their high packing factor and instant deployment. The computational grids have been built to accurately reflect the fin edge shape of the experimental model. The significant parameter of the WAF is the rolling moment, that was computed using CFD and compared with available experimental test data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.