Abstract

Interaction between tetracationic porphyrin, 5,10,15,20-tetrakis( N-methylpyridinium-4-yl)porphyrin (TMPyP), and layered silicates in aqueous dispersions was studied using absorption, steady-state and time-resolved fluorescence spectroscopies. The charge density of silicates increases in order synthetic laponite (LAP)<Kunipia F montmorillonite (KF)<synthetic fluorohectorite (FHT). Interpretations of the spectra of layered silicate–porphyrin (LSP) systems considered models of dye adsorption on clay mineral colloid particles, analyzing phenomena occurring in similar systems such as structural changes of TMPyP and the formation of dye molecular assemblies. Structural changes of TMPyP, including flattening of the porphyrin molecule, do not fully explain all the spectral observations. One should mention variations of the Q-bands and fluorescence spectra in dependence on the layer charge. The molecular association of the TMPyP molecules is expected to occur to a certain extent in dependence on the layer charge of a clay mineral template. H-aggregates were not observed in any system. Only FHT colloids induced the formation of at least two components with significantly different spectral properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.