Abstract
The influence of the iridium oxide thin film on the electrocatalytic properties of platinum nanoparticles was investigated using the electro-oxidation of methanol and CO as a probe. The presence of the IrO(2) thin film leads to the homogeneous dispersion of Pt nanoparticles. For comparison, polycrystalline platinum and Pt nanoparticles dispersed on a Ti substrate in the absence of an IrO(2) layer (Ti/Pt) were also investigated in this study. Inverted and enhanced CO bipolar peaks were observed using an in situ electrochemical Fourier transform infrared technique during the methanol oxidation on the Pt nanoparticles dispersed on a Ti substrate. Electrochemical impedance studies showed that the charge transfer resistance was significantly lower for the Ti/IrO(2)/Pt electrode compared with that of the massive Pt and Ti/Pt nanoparticles. The presence of the IrO(2) thin film not only greatly increases the active surface area but also promotes CO oxidation at a much lower electrode potential, thus, significantly enhancing the electrocatalytic activity of Pt nanoparticles toward methanol electro-oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.