Abstract

ABSTRACTBlending ionic liquid with crystalline polymer permits the design of new high‐performance composite materials. The final properties of these materials are critically depended on the degree of crystallinity and the nature of crystalline morphology. In this work, nonisothermal crystallization behavior of poly(ether‐b‐amide) (Pebax®1657)/room temperature ionic liquid (1‐butyl‐3‐methylimidazolium hexafluorophosphate, [bmim]PF6) was investigated by differential scanning calorimetry. The presence of [bmim]PF6 can retard the nucleation of Pebax®1657 and lead to the crystallization depression of the PA block and the crystalline disappearance of the PEO block. However, the dilution effect of the IL results in a higher growth rate of crystallization of PA block. The influence of [bmim]PF6 content and cooling rate on crystallization mechanism and spherulitc structures was determined by the Avrami equation modified by Jeziorny and Mo's methods, whereas the Ozawa's approach fails to describe the nonisothermal crystallization behavior of Pebax®1657/[bmim]PF6 blends. In the modified Avrami analysis, the Avrami exponent of PA blocks, n > 3, for pure Pebax®1657, while 3 > n > 2 for Pebax®1657/[bmim]PF6 blends testifies the transformation of crystallization growth pattern induced by [bmim]PF6 from three‐dimensional growth of spherulites to a combination of two‐ and three‐dimensional spherulitic growth. Further, lower activation energy for the nonisothermal crystallization of PA blocks of Pebax®1657 can be observed with the increase of [bmim]PF6 content. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42137.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.