Abstract

Deposition of calcium phosphate minerals on the elastin-rich medial layers of arteries can cause severe cardiovascular complications. There are no available treatments for medial calcification, and the mechanism of mineral formation on elastin layers is still unknown. We recently developed an in vitro model of medial calcification using cross-linked elastin-like polypeptide (ELP) membranes immersed in simulated body fluid (SBF). While mineral phase evolution matched that observed in a mouse model of medial calcification, the long incubation required was a practical limitation of this model. Using higher SBF ion concentrations could be a solution to speed up mineral deposition, but its effect on the mineralization process is still not well understood. Here we analyze mineral formation and phase transformation on ELP membranes immersed in high concentration SBF. We show that while mineral deposition is significantly accelerated in these conditions, the chemistry and morphology of the minerals deposited on the ELP membranes and the overall mineralization process are strongly affected. Overall, this work suggests that while the use of low concentration SBF in this in vitro model is more appropriate to study medial calcification associated with the loss of calcification inhibitors, higher SBF ion concentration may be more relevant to study medial calcification in patients with life-threatening diseases such as chronic kidney disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call