Abstract
This paper is devoted to examining the effect of intrinsic spin-orbit interaction on the possible appearance of edge magnetic moments and spin-dependent transport in graphenelike nanoflakes. In the case of finite-size graphenelike nanostructures it is shown that, on one hand, energetically the most advantageous configuration corresponds to magnetic moments located at zigzag edges with the in-plane antiferromagnetic inter-edge coupling. On the other hand, the tunnel magnetoresistance and the shot noise also have thoroughly been tested both for the in-plane configuration as well as for the out-of-plane one (for comparison reasons). Transport properties are described in terms of the mean-field Kane-Mele-Hubbard model with spin mixing correlations, supplemented by additional terms describing external leads, charging energy, and lead-nanostructure tunneling. The results show that Coulomb blockade stability spectra of graphenelike nanoflakes with ferromagnetic contacts provide information on both the intrinsic spin-orbit interaction and the expected edge magnetism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.