Abstract

Infrared spectroscopy is used to investigate the effect of ammonia adsorption on the concentration of equilibrium charge carriers in porous-silicon layers with various initial types of dopants at different concentrations. It is found that ammonia adsorption results in an increase in the number of free electrons in n-type samples up to a level exceeding 1018 cm−3. In p-type samples, a nonmonotonic dependence of the charge-carrier concentration on ammonia pressure is observed. The obtained results are accounted for by the appearance of adsorption-induced shallow donor states that, along with the initial-dopant and surface-defect states, specify the charge-carrier type and concentration in the silicon nanocrystals of the porous layer after ammonia adsorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.