Abstract

Molecular dynamics (MD) computer simulations are used to model ejection of particles from β-carotene samples bombarded by 15 keV Ar2000. The effect of the incidence angle on the angular and kinetic energy distributions is investigated. It has been found that both of these distributions are sensitive to the variation of the incidence angle, particularly near the normal incidence. For impacts along the surface normal, material ejection is azimuthally symmetric, and a significant emission occurs along the surface normal. The kinetic energy distribution of intact molecules has a maximum near 1 eV and terminates below approximately 2 eV. An increase of the incidence angle breaks the azimuthal symmetry. Most of the intact molecules become ejected in the forward direction. The maximum in the polar angle distribution shifts toward large off-normal angles. In addition, the most probable kinetic energy of ejected molecules is significantly increased. The mechanisms of molecular emission responsible for the observed changes are delineated. The implications of the observed ejection characteristics for the utilization of large gas cluster projectiles in secondary neutral mass spectrometry are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.