Abstract
Mitochondrial respiratory activities and energy metabolism were measured in neonatal rat brains to evaluate the influence of transient intrauterine ischemia on the near-term fetus and to assess the effect of the immunosuppressant drug FK506 treatment. Transient intrauterine ischemia was induced by 30 min of right uterine artery occlusion at 17 days of gestation in Wistar rats. The vehicle or 1.0 mg/kg of FK506 was administered after 1 h of recirculation. All of the pups were delivered by cesarean section at 21 days of gestation and samples of cerebral cortical tissue were obtained from pups at 1 h after birth. The mitochondrial respiration was measured polarographically in homogenates. For the analysis of ATP, ADP, and AMP, neonatal brains were frozen in situ and fluorometric enzymatic techniques were used. In the neonatal cortical tissue exposed to ischemia, mitochondrial respiratory activities and ATP concentrations decreased significantly to ∼59 and 67% of those in normoxic controls, respectively. The deterioration of both mitochondrial respiratory activities and high-energy phosphates was prevented by FK506, given 1 h after the start of recirculation. The present results indicate that transient intrauterine ischemia is accompanied by mitochondrial dysfunction and cellular bioenergetic failure in the neonatal rat brain and suggest that treatment with FK506 prevents the deterioration, even when administered after the ischemic periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.