Abstract

PurposeIn a printed circuit board assembly (PCBA), the coefficient of thermal expansion (CTE) mismatch between the solder joint materials has a detrimental impact on reliability. The mechanical stresses caused by the thermal changes of the assembly lead to fatigue and sometimes the failure of the solder joints. The purpose of this study is to propose a novel pad design to obtain an interrupted solder/substrate interface, to improve the PCBA reliability.Design/methodology/approachAn interruption in the continuous intermetallic compound (IMC) layer of a solder joint was implemented, by the deposition of a silicone film in the pad, changing its geometry. That change allows a redistribution of stresses in the most ductile zone of the solder joint, the solder. The stress concentration at the solder/substrate interface is reduced, as well as the general state of stress at the solder joint.FindingsA new way was developed to reduce the stress on the solder joints, caused by thermal variations, because of the different components CTEs mismatch. This new method consists of interrupting the IMC layers of the solder joint, strategically, redirecting the usual stresses to a more ductile area of the joint, the solder. This is an innovative method that allows increase the lifetime of PCBAs and the equipments.Originality/valueIn this study, a new pad design concept for higher solder joint reliability was developed to reduce the shear stress in the solder joints because of the CTE mismatch between all the solder joint components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call