Abstract

A hybrid numerical analysis that includes the hydrodynamic bearing effect and elastic contact in a ring-type ultrasonic motor is presented. The two-dimensional Reynolds equation is solved numerically by a finite difference algorithm. The rotor deformation is described by a one-dimensional Green's function obtained by using a finite element elastic analysis code. The contact problem is solved by an iteration method so that the contact condition and the hydrodynamic bearing condition are satisfied simultaneously. The results show that the hydrodynamic bearing effect is significant for ultrasonic frequency contact of the rotor and stator. Surface roughness, contact area, and normal vibrating speed of the stator are important parameters in the hydrodynamic bearing. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.