Abstract

Two series of Sc3+- and Nb5+-doped TiO2 (rutile) samples were synthesized and characterized by SEM, ICPE spectroscopy, XPS, and BET methods. Photocatalytic activity of the doped TiO2 samples was tested in photocatalytic degradation of phenol. Dependences of the photocatalytic activities of the doped TiO2 samples demonstrate a volcano-like behavior, indicating the existence of the optimal dopant concentrations to achieve the highest activity of photocatalysts. Remarkably, the optimal dopant concentrations correspond to the extrema observed in work function dependences on the dopant concentrations, that indicates a significant energy redistribution of the defect states within the bandgap of TiO2. Such a redistribution of the defect states is also proven by the alterations of the optical and EPR spectra of the intrinsic Ti3+ defect states in TiO2. Based on the analysis of the experimental results, we conclude that both Sc3+ and Nb5+ doping of TiO2 results in redistribution of the defect states and the optimal dopant concentrations correspond to the defect structures, which are ineffective in charge carrier recombination, that ultimately leads to the higher photocatalytic activity of doped TiO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.