Abstract

PurposeThis study aims to focus on the heat treatment influence on the corrosion resistance, adhesion of Streptococcus mutans and mechanical properties of CoCrMo alloys manufactured by the selective laser melting (SLM).Design/methodology/approachCoCrMo alloys were manufactured using the Dimetal-100 machine. X-ray diffraction (XRD), metallographic analysis, scanning electron microscopy (SEM), electrochemical corrosion, Vickers microhardness and tensile tests were used to characterize SLM-produced CoCrMo alloys and compare them with the ones manufactured by casting and with the ASTM F75 standard.FindingsThe electrochemical results showed that SLM900 samples had the best corrosion resistance in artificial saliva. The adhesion results showed least propagation and overall quantity of Streptococcus mutans on the SLM900 sample. The microhardness, tensile and yield strength of As-SLM, SLM900 and SLM1200D samples were measured according to the ASTM F75 standard. The elongation of SLM900 was less than 8 per cent, which does not meet the standard specifications. Analysis of the fracture morphology showed that the fracture mechanisms of As-SLM and SLM1200D belong to the quasi-cleavage fracture type, and the mechanical fracture mechanism of SLM900 can be characterized as brittle fracture.Originality/valueThis paper presents the adhesion properties of Streptococcus mutans on the surface of CoCrMo alloys manufactured by SLM and proposes how to regulate the effect of the heat treatment on the corrosion resistance and mechanical properties of CoCrMo alloys manufactured by SLM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call