Abstract

The influence of graphite content on the dry sliding wear characteristics of Al6061/Gr composites along with Al6061/30SiC/Gr hybrid composites has been assessed using a pin-on-disc wear test. The composites with different volume fraction of graphite particles up to 13% were processed by in situ powder metallurgy (IPM) technique. The porosity and hardness of the resultant composites were also examined. It was found that an increase in the graphite content reduced the porosity, hardness, and friction coefficient of both types of composites. The hybrid composites were more porous and exhibited higher hardness and lower coefficient of friction at identical graphite contents. The increased graphite content in the range of 0–13 vol.% resulted in increased wear rate of Al/Gr composites. The Al/30SiC composite exhibited a lower wear rate as compared with the base alloy and graphite addition up to 9 vol.% improved the wear resistance of these hybrid composites. However, more graphite particles addition resulted in increased wear rate. SEM micrographs revealed that the wear mechanism was changed from mostly adhesive in the base alloy sample (Al/0Gr) to the prominently abrasive and delamination wear for Al/Gr and Al/SiC/Gr/composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call