Abstract

Abstract The effects of the length of glass fibers on the toughness of long glass fiber reinforced polyphenylene sulfide (PPS) composites (PPS-LFT), made by the pulltrusion process, were studied with regards to both the molding V notched specimen and the cutting V notched specimen. Toughness was excellent on the molding V notched specimen. By observing the fracture morphology of the molded V notched specimen, it was found that a crack was formed, due to a slip or debonding at the fiber surface. The crack was propagated along the fiber, due to the pulling out of fibers from the matrix polymer. Both the maximum load and the fracture energy increased with increasing length of the glass fiber, because the resistance created by pulling out the fibers increased with increasing fiber length. In the case of PPS-LFT, it is understood that toughness improved because the slip between the fiber and the resin occurs before the excessive elastic strain energy is stored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.