Abstract

Equations for the spectral densities of complex motion of a spin pair undergoing internal motion and isotropic/anisotropic overall rotation have been considered. The fluctuations of the interproton distances, caused by internal motion, have been taken into account in the theoretical equations. A method allowing a distinction between the isotropic and the anisotropic overall rotation of molecules has been proposed. The effect of the activation parameters of internal motions (known from the solid state study) on the measured T 1 relaxation of the 13C and 1H–1H cross-relaxation rates has been analysed for methyl-β-D-galactopyranoside in DMSO-d6 solution. The conformational trans-gauche jumps of the methylene group are not fast enough to affect the T 1 value of carbon C6 in the liquid state temperatures regime. Only the methyl group rotation is a very fast internal motion. This motion influences the carbon C7 relaxation and methyl protons–anomeric proton cross-relaxation. The values of interatomic distances between anomeric H(C1) and H(C5) as well as the three methyl protons H(C7) have been calculated from the cross-relaxation rates. The distance H(C1)–H(C7) fluctuates due to the rotation of methyl group. The application of the ‘model-free approach’ to study molecular dynamics in solutions is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.