Abstract

In this study, the effect of the fracturing degree of the source rock on rock avalanche river-blocking behavior was investigated. The study included the analysis of mass movement behavior, impulse wave behavior, and the formation of landslide dams. The study included a series of simulations of rock avalanche river-blocking based on the coupled Eulerian-Lagrangian (CEL) technique. Prior to the simulation, a water column collapse model was applied to validate the use of the CEL technique on fluid-structure interaction, and to calibrate the material parameters. The source rock in the rock avalanche simulation was cut by different groups of structural planes, with the number of 0 × 0 × 0, 1 × 1 × 1, 4 × 4 × 4, 9 × 9 × 9, 14 × 14 × 14, 19 × 19 × 19 in each dimension, respectively, to represent different fracturing degrees, on the premise of the same volume and shape of the source rock. The simulation results showed that the sliding mass exhibited structure stabilization, such that the structure of the sliding mass gradually stabilized to a steady status over time, in the mass movement process. The structure stabilization made the center of the sliding mass constantly decrease, and provided a higher speed of movement for the rock avalanches with higher fracturing degrees of the source rock. As for the impulse wave behavior, with the increase in the fracturing degree of the source rock, the maximum kinetic energy of the water decreased, and the maximum height and propagation speed of the impulse waves decreased, which indicated that the maximum height and the propagation speed of the impulse waves were positively correlated with the maximum kinetic energy of the water. In regard to the formation of the landslide dams, when the fracturing degree of the source rock was low, the shape of the landslide dam was very different. With the increase of the fracturing degree of the source rock, the shapes of the landslide dams stabilized, and varied slightly after the fracturing degree of the source rock reached a threshold value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call