Abstract

The influence of the orientation of the fiber reinforcement on the deformation mechanisms of Mg–Al–Ca alloy-based composite has been investigated in-situ using acoustic emission and neutron diffraction methods. Results indicate that the twinned volume is the smallest, when the fibers plane is perpendicular to the loading direction. Residual thermal stresses having a tensile character are present in the as-received composites, which gradually vanishing during compressive straining. The load transfer from the matrix to fiber has been found more effective for specimens with fiber planes aligned with the loading direction, which is in agreement with the theoretical shear-lag model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call