Abstract
Isolates of Alternaria solani previously collected from throughout the Midwestern United States and characterized as being azoxystrobin sensitive or reduced sensitive were tested for sensitivity to the Quinone outside inhibitor (QoI) fungicides famoxadone and fenamidone and the carboxamide fungicide boscalid. All three fungicides affect mitochondrial respiration: famoxadone and fenamidone at complex III, and boscalid at complex II. A. solani isolates possessing reducedsensitivity to azoxystrobin also were less sensitive in vitro to famoxadone and fenamidone compared with azoxystrobin-sensitive isolates, but the shift in sensitivity was of lower magnitude, approximately 2- to 3-fold versus approximately 12-fold for azoxystrobin. The in vitro EC50 values, the concentration that effectively reduces germination by 50% relative to the untreated control, for sensitive A. solani isolates were significantly lower for famoxadone and azoxystrobin than for fenamidone and boscalid; whereas, for reduced-sensitive isolates, famoxadone EC50 values were significantly lower than all other fungicides. Isolates of A. solani with reducedsensitivity to azoxystrobin were twofold more sensitive in vitro to boscalid than were azoxystrobin-sensitive wild-type isolates, displaying negative cross-sensitivity. All isolates determined to have reduced-sensitivity to azoxystrobin also were determined to possess the amino acid substitution of phenylalanine with leucine at position 129 (F129L mutation) using real-time polymerase chain reaction. In vivo studies were performed to determine the effects of in vitro sensitivity shifts on early blight disease control provided by each fungicide over a range of concentrations. Reduced-sensitivity to azoxystrobin did not significantly affect disease control provided by famoxadone, regardless of the wide range of in vitro famoxadone EC50 values. Efficacy of fenamidone was affected by some azoxystrobin reduced-sensitive A. solani isolates, but not others. Boscalid controlled azoxystrobin-sensitive and reduced-sensitive isolates with equal effectiveness. These results suggest that the F129L mutation present in A. solani does not convey cross-sensitivity in vivo among all QoI or related fungicides, and that two- to threefold shifts in in vitro sensitivity among A. solani isolates does not appreciably affect disease control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.