Abstract

A dual-beam transient thermal-lens technique was employed for the determination of absolute fluorescence quantum-yield measurements of Rhodamine B laser dye in different solvents. We investigated the effect of excitation on the absolute fluorescence quantum yield of Rhodamine B. 514 nm radiation from an argon ion laser was used as a cw excitation source and 532 nm pulses from a Q-switched Nd:YAG laser were used as a pulsed excitation source. The fluorescence quantum-yield values were found to be strongly influenced by environmental effects as well as the transient nature of the excitation beam. Our results also indicate that parameters, like the concentration of the dye solution, aggregate formation and excited state absorption, affect the absolute values of the fluorescence yield significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call