Abstract

The presence of a constant electric field (300 kV m–1) and variation of CO2 concentration in the fluid affected the morphology of ZnO nanocrystals and the internal structure of ZnO layer obtained on interacting zinc anode with supercritical H2O/CO2 at 673 K and 35 MPa. The electric field favors the formation of zinc oxalate and carbonate, the thermal decomposition of which forms the pore structured of ZnO. Moreover, a fraction of elongated nanocrystals in the surface layer of ZnO is increased due to the action of the electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.