Abstract

Using an Escherichia coli gene expression system, we have engineered human hemoglobin (Hb) mutants having the distal histidine (E7) and valine (E11) residues replaced by other amino acids. The interaction between the mutated distal residues and bound carbon monoxide has been studied by Soret-excited resonance Raman spectroscopy. The replacement of Val-E11 by Ala, Leu, Ile, and Met has no effect on the v(C-O), v(Fe-CO) stretching or delta(Fe-C-O) bending frequencies in both the alpha and beta subunits of Hb, although some of these mutations affect the CO affinity as much as 40-fold. The strain imposed on the protein by the binding of CO is not localized in the Fe-CO bond and is probably distributed among many bonds in the globin. The replacement of His-E7 by Val or Gly brings the stretching frequencies v(Fe-CO) and v(C-O) close to those of free heme complexes. In contrast, the substitution of His-E7 by Gln, which is flexible and polar, produces no effects on the resonance Raman spectrum of either alpha- or beta-globin. The replacement of His-E7 of beta-globin by Phe shows the same effect as replacement by Gly or Val. Therefore, the steric bulk of the distal residues is not the primary determinant of the Fe-CO ligand vibrational frequencies. The ability of both histidine and glutamine to alter the v(C-O), v(Fe-CO), or delta(Fe-C-O) frequencies may be attributed to the polar nature of their side chains which can interact with bound CO in a similar manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.