Abstract

The effect of the dissolved oxygen on glycerol and ethanol productions by an osmotolerant yeast Hansenula anomala was examined during growth in media at low water activity resulting from the addition of 2M NaCl in the culture medium. High stirring rate, high culture medium aeration, as well as high mass transfer surface inhibited both glycerol and ethanol biosynthesis. In absence of oxygen, yeast used acetaldehyde as a hydrogen acceptor, leading to the stimulation of ethanol biosynthesis and accounting for the low biomass and glycerol production; the experimental ratio ethanol on glycerol produced was 5.1 when the available oxygen was lowered (low stirring rate, 500rpm) and increased to 10.2 in absence of aeration. Extracellular glycerol production was therefore optimal for a moderate stirring (1000rpm) and aeration (1.4vvm) rates. These optimal conditions resulted in an experimental ratio ethanol on glycerol produced of 4.1, namely close to the theoretical value of 4, illustrating the osmodependent channelling of carbon towards polyols production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.