Abstract

We have systematically investigated the effect of dipolar interaction strength on the dynamical hysteresis behavior of the in-plane uniaxial anisotropic nanodisk system modeled by the classical Heisenberg model under the effect of the time-dependent external out-of-plane periodic magnetic field. Dynamical hysteresis loops, as well as hysteresis quantities (hysteresis loop area, coercive field, remanent magnetization), have been examined both in-plane and out-of-plane magnetization components by means of Monte Carlo simulation based on Metropolis Algorithm. Our simulation results suggest that the response of the in-plane and out-of-plane components of the magnetization have different hysteresis characteristics. For instance, while the out-of-plane component of the magnetization has ordinary dynamically disordered hysteresis curves, bowtie-shaped hysteresis loops have been obtained for the in-plane component of the magnetization. Disappeared dynamical order has been observed with the rising strength of the dipolar interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.