Abstract

BackgroundDuring processing in a desolventizer/toaster (DT), rapeseed meal (RSM) is heated to evaporate the hexane and to reduce the level of heat-labile anti-nutritional factors such as glucosinolates (GSL). However, excessive heat treatment may reduce amino acid (AA) content in addition to lower AA digestibility and availability in RSM. The objective of the present study was to produce from one batch of a 00-rapeseed variety (17 μmol GSL/g dry matter (DM), seed grade quality) five differently processed RSM under standardized and defined conditions in a pilot plant, and to determine the impact of these different treatments on protein solubility and chemical composition, in particular with regard to contents of AA including reactive Lys (rLys) and levels of total and individual GSL.MethodsFour RSM were exposed to wet toasting conditions (WetTC) with increasing residence time in the DT of 48, 64, 76, and 93 min. A blend of these four RSM was further processed, starting with saturated steam processing (< 100 °C) and followed by exposure to dry toasting conditions (DryTC) to further reduce the GSL content in this RSM.ResultsThe contents of neutral detergent fiber and neutral detergent fiber bound crude protein (CP) increased linearly (P < 0.05), as residence time of RSM in the DT increased from 48 to 93 min, whereas contents of total and most individual GSL and those of Lys, rLys, Cys, and the calculated ratio of Lys:CP and rLys:CP decreased linearly (P ≤ 0.05). The combination of wet heating and DryTC resulted in the lowest GSL content compared to RSM produced under WetTC, but was associated with lowest protein solubility.ConclusionsIt can be concluded that by increasing residence time in the DT or using alternative processing conditions such as wet heating combined with DryTC, contents of total and individual GSL in RSM can be substantially reduced. Further in vivo studies are warranted to elucidate if and to which extent the observed differences in protein quality and GSL content between RSM may affect digestibility and bioavailability of AA in monogastric animals.

Highlights

  • During processing in a desolventizer/toaster (DT), rapeseed meal (RSM) is heated to evaporate the hexane and to reduce the level of heat-labile anti-nutritional factors such as glucosinolates (GSL)

  • With the introduction of 00-RS varieties, the content of total GSL in solvent extracted and toasted RSM decreased from 150 μmol total GSL/g dry matter (DM) in 0-RSM to levels ranging between 1–22 μmol total GSL/g DM in 00-RSM [20]

  • The objective of the present study was to produce in a pilot plant under standardized and defined conditions from one batch of a 00-RS variety five differently processed RSM, and to determine the impact of these different treatments on protein solubility and chemical composition of these RSM including contents of amino acid (AA) and reactive Lys, and levels of total and individual GSL

Read more

Summary

Introduction

During processing in a desolventizer/toaster (DT), rapeseed meal (RSM) is heated to evaporate the hexane and to reduce the level of heat-labile anti-nutritional factors such as glucosinolates (GSL). The objective of the present study was to produce from one batch of a 00-rapeseed variety (17 μmol GSL/g dry matter (DM), seed grade quality) five differently processed RSM under standardized and defined conditions in a pilot plant, and to determine the impact of these different treatments on protein solubility and chemical composition, in particular with regard to contents of AA including reactive Lys (rLys) and levels of total and individual GSL. Rapeseed meal (RSM) is a by-product of oil processing and commonly used as a protein source for livestock. Despite its well-balanced amino acid (AA) profile [3], in particular its relatively high content of sulfur AA in comparison to other protein feedstuffs including soybean meal [4, 5], the use of RSM in diets for monogastric animals is often. The content of total GSL in RSM produced in Germany from commercially available 00-RS varieties averages 8.8 μmol total GSL/g RSM [21]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call