Abstract

Pulsed laser deposition (PLD) of Ir thin films has been achieved by ablating an iridium target with a KrF excimer laser. The iridium deposition rate was investigated, over the (0.4–2) × 109 W/cm2 laser intensity range, and found to reach its maximum at (1.6 ± 0.1) × 109 W/cm2. At this laser intensity, the PLD Ir films were deposited at substrate deposition temperatures ranging from 20 to 600 °C. The PLD Ir films exhibited a (111) preferentially oriented polycrystalline structure with their average grain size increasing from about 10 to 30 nm as the deposition temperature was raised from 20 to 600 °C. Their mean surface microroughness (Ra) was found to change from an average value of about 1 nm in the 20–400 °C temperature range to a value of about 4.5 nm at 600 °C. As the deposition temperature is varied from 20 to 600 °C, not only does the stress of PLD Ir films change drastically from highly compressive (−2.5 GPa) to tensile (+0.8 GPa), but their room-temperature resistivity also gradually decreases in the 20–400 °C range and stabilizes for higher temperatures. In the 400–600 °C range, the resistivity of PLD Ir films was as low as 6.0 ± 0.2 μΩ cm, which is very close to the iridium bulk value of 5.1 μΩ cm. Thus, PLD Ir films exhibiting not only the lowest resistivity but also a nearly zero stress level can be grown at a deposition temperature of about 400 °C. The resistivity of the PLD Ir films can be described by a grain boundary scattering model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call