Abstract

Adjusting Polish law to EU standards, many studies were started in the 1990s on the harmfulness of presumably contaminating elements (PCE) to the environment and the quality of plants intended produced for food purposes. For this reason, in 1987, a unique microplate experiment was established on natural soils artificially contaminated with copper, zinc, lead and cadmium oxides (up to the pollution level of class I, II and III). The soils were diversified in terms of pH (through liming), organic matter content (through the addition of brown coal) and the grain size composition of the humus level (Ap) (strong clay sand and light silt clay). After 14 years from the introduction of different rates of metals into the top layer (0–30 cm) of the two soils studied, relatively large movement of heavy metals in the soil profile occurred. The amount of leached metals depended mainly on the rate of a given element. The more contaminated was the soil was, the heavier the metals that leached to lower genetic levels of soil. Contaminated soils always had a higher concentration of individual metals in Et than in Bt level. The content of the tested metals in the Et layer was determined in HCl (1 mol·dm−3) and compared to the humus level. Only at the soil depth below 50 cm (Bt), the content of the studied metals’ forms was much lower than in the surface levels. The calculated mobility coefficients of the tested metals determined in 1 M HCl indicate a larger movement of the tested metals in lighter soils than in medium soils. The highest displacement coefficients were obtained for cadmium, while the lowest were for lead. An increase in mobility was obtained alongside an increase in soil contamination with the heavy metals studied. By analyzing the mobility coefficients (heavy metal increase in the Bt and Et layers), they can be ranked in the following decreasing sequence: on light soils: Cd > Cu > Zn > Pb and on medium soils: Cd > Zn > Pb > Cu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.