Abstract

The deployment of high capacity Radio-over-Fiber (RoF) systems rely, among many aspects, on the capability to efficiently generate, transport, and detect millimeter-wave carriers modulated at high data rates. Photonic approaches based on the heterodyne beating of two free-running laser sources have been proposed as an alternative to generate multi-Gbps quadrature phase modulated signals imposed on millimeter wave carriers. Implementing photonic approaches in the down-link avoids the need for electronic generation of high frequency carriers and decreases the requirements at the base band electronics. In addition, implementing complex modulation formats overcomes some of the typical issues found in intensity modulation direct detection approaches such as non­ linearity, receiver sensitivity and dynamic range. In this work, the performance improvement of a coherent RoF system carrying 10 Gbps QPSK signals is numerically analyzed in terms of both the frequency linewidth and the degree of phase correlation between the lasers utilised at the down-link (for the optical heterodyne beating) and at the up-link (for the optical coherent detection). Relative to phase correlated lasers featuring linewidths of 5 MHz, the peak power of the 60 G Hz carrier generated at the down-link is reduced by 8 dB for un-correlated lasers. In addition, the error vector magnitude of the received signal at the up-link is improved from over 20% (for un-correlated lasers and linewidths of 5 MHz) to around 15% (for correlated lasers) at an optical received power of -30 dBm. The results obtained reinforce the idea of using coherent comb laser sources with phase correlated modes located at the Central Office. It also motivates the eventual deployment of techniques to control the degree of phase correlation between the lasers used as signal and local oscillator at the optical coherent receivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.