Abstract
The effect of varying the percent crystallinity on the electrochemical behavior of Mg65Cu25Y10 and Mg70Zn25Ca5 bulk metallic glasses was studied. The alloys were heat-treated to achieve desired microstructures ranging from fully amorphous to fully crystalline, providing a systematic basis for subsequent testing. Potentiodynamic experiments in 0.01 M sodium chloride (NaCl) were used, whereby both the amorphous and partially crystallized samples were observed to have more noble corrosion potentials and lower anodic kinetics. However, this was accompanied by more rapid cathodic kinetics relative to their fully crystalline counterparts, meaning that corrosion rates were not significantly lower in the amorphous state. To describe the electrochemical response as a function of the degree of crystallinity, differential scanning calorimetry (DSC), scanning electron microscopy, x-ray diffraction (XRD), and electrical conductivity measurements were undertaken, where it was found that crystallinity alone is not necessarily the controlling factor and microchemistry that evolves upon devitrification, plays a key role in the electrochemical response of these materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.