Abstract

Changes in the elastic constants cij of disordered cubic titanium carbide TiCy with an increasing the defectiveness of the carbon sublattice are estimated for the first time. It was found that the deviation of titanium carbide from the stoichiometric composition TiC1.0 leads to a decrease in the elastic stiffness constants cij of disordered TiCy carbide with a simultaneous increase in elastic anisotropy. The distributions of Young's modulus E and Poisson's ratio μ in the (100) plane and the distributions of the shear modulus G in the (100), (110), and (111) planes have been calculated as functions on the crystallographic direction [hkl] and on the relative carbon content y in TiCy carbide. The lowest values of the shear modulus Ghkl for TiCy are observed in the (111) plane. Keywords: Titanium carbide, Nonstoichiometry, Vacancies, Elastic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.