Abstract

Nickel-based superalloys are widely employed to manufacture aero-engine turbines due to their high mechanical strength and resistance to corrosion and creep. Vacuum Induction Melting (VIM) is a suitable manufacturing technology because of the reactive nature of the alloying elements; however, the melting process is time-consuming and energy-demanding. This research focuses on increasing the overall efficiency of the process in two ways. Initially, studying the influence of metal-containing crucible composition and thermal properties on the melting. In a semi-industrial VIM facility, 2 kg of Inconel 718 alloy was melted employing Al2O3, ZrO2, MgO, and Al6Si4O13-based crucibles. The Al6Si4O13 and ZrO2-based crucibles reduced energy consumption by 28% and 23%, respectively, compared to the reference crucible of Al2O3. Subsequently, an optimized melting procedure is proposed to reduce the process cycle time and energy demand, saving 10%–20% for all crucibles compared to the standard melting procedure. In addition, the ZrO2 and Al6Si4O13 crucibles reduced total cycle time by 13% and 21%, respectively. During melting, intense dross formation was detected for all crucibles, dissipating faster for Al6Si4O13 and MgO crucibles. Therefore, the metal-crucible interface product was analyzed to understand these mechanisms better, and the four crucibles' chemical reactivity was examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.