Abstract

Dynamic covalent materials are a class of polymer that could be stress-relaxation, reprocessable, and self-healing due to dynamic crosslinks in network. Dynamic crosslinks play an important role in the typical characteristic of self-healing polymers. It is meaningful to understand the effect of crosslinking degree on the properties of poly(1,2,3-triazolium) (PTAM). In this article, the dynamic covalent network of PTAM adhesive has been used to study the effect of crosslinking degree. A series of PTAM adhesive with different crosslinking degrees have been obtained by changing the amount of crosslinker. Adhesion property can first rise then fall down with the increase of crosslinking degree and the best lap-shear strength is above 20MPa. Creep resistance and solvent resistance can be enhanced with the increase of crosslinking degree. Self-healing studies have shown that crosslinking degree can enhance the ability of self-healing, but too high crosslinking degree raises the temperature of self-healing and causes side reaction which reduces the self-healing efficiency. These results provide some insights for the influence of the crosslinking degree on the self-healing and the structural design of dynamic covalent materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.