Abstract
This paper numerically presented the effect of the cross-flow wake on the hydrodynamic performance of the ship propeller. The propeller is a typical high skewed propeller (HSP) of the training ship ‘Seiun-Maru’, whose experimental data have been frequently used by many researchers. The viscous flow is solved by an incompressible Reynolds Averaged Navier–Stokes (RANS) method using Ansys-CFX solver. The shear stress transport (SST) k–ω turbulence model is employed for the simulation of the propeller in a fully turbulent flow. The thrust and torque coefficients at 10 presented advance coefficients (between 0.1 and 1) showed good agreement comparing with experimental data. The numerical results are increased in the wake flows. The unsteady oscillating load of thrust and torque is presented and discussed for one blade and whole blades during one cycle at different cross-flow wakes and at advance coefficient (J = 0.85). Based on the numerical results, when the cross-flow wake is increased by 20% and 50%, the thrust at J = 0.85 are increased about 2.03% and 4.71% respectively and the torque at J = 0.85 is increased about 1.04% and 2.69%, respectively. Moreover, pressure distribution and streamlines are also presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.