Abstract

Abstract Past research into the mechanism governing the time to active crevice corrosion—the incubation period—of a passive metal crevice has produced theoretical models coupled with the B-dot model, the Debye-Huckel limiting law, and other activity models to correct for nonideal behavior at moderately high concentrations. In this research, the transport model of Watson and Postlethwaite is coupled with the ionic interaction model of Pitzer to predict the effect of the crevice gap on the iR drop and chemical activity of the crevice solution. Two cathodic reactions, crevice external oxygen reduction and crevice internal hydrogen ion reduction, are assumed to balance metal dissolution. To validate the model, the experimental Type 304 (UNS S30400) stainless steel crevice of Alavi and Cottis is simulated. Model predictions improve upon predictions of past models and match observations of this experimental work within experimental uncertainty. The effect of crevice gap on a titanium crevice immersed in 0.5 M a...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.